
1

NORMA August 2024 Release
Unary Negation, Absorbed Subtype Columns, Default Values

Unary Negation
The NORMA August 2024 release includes a significant change to unary fact types. This is a one-

directional change, so if you open and save any previous .orm file (with at least one unary fact

type) then you will not be able to load that file in previous NORMA versions. Although I

recommend using automatic updates for the NORMA extension, if you have a co-modeler who

does not do this then you should encourage them to update to avoid friction in your working

relationship.

Old Unary Fact Types (Binarized)

NORMA has long used a fully binarized form of the model hiding just under the surface. With

this approach, the model has a live parallel representation using functional binary fact types

(one single role uniqueness constraint) or one-to-one fact types (two single role uniqueness

constraints). Ignoring the non-binarized form (n-ary fact types, objectifications and spanning-

binary fact types) is easily done, as is using the parallel binary form for analysis. The binarized

form is a powerful tool to simplify mapping to physical models by tightly limiting the number of

fact type patterns that mapping algorithms need to consider.

As part of this binarization push, we also (circa November 2006, when NORMA was in its

infancy) binarized unary fact types by implicitly creating an implied Boolean value type for each

unary fact type. This felt like a good idea at a time. However, the issues with this early decision

became increasingly clear over time.

1. Almost all uses of unary fact types needed special consideration in the NORMA code. For

example, Fact Type Shapes were always given a role order (with one role) to force the

underlying value role from displaying, Uniqueness and Frequency constraints were

attached to the hidden role while all other constraints attached to the visible unary role,

and link fact type patterns used a unique role subtype (ironically, so that reducing to a

binary-only form kept the objectified unary role instead of removing it like all other

objectifications).

2. In addition to the special cases for unaries, the project was also sprinkled with code to

determine if a binary was really a binary fact type or a unary masquerading as a binary.

3. It turned out that special casing was required practically anywhere these binarized

unaries were consumed, effectively negating the advantage of the binarized form.

4. Logically, although true and false were allowed, there was no natural way to reference

the false state, so constraints and objectifications were assumed to apply to the ‘true’

state. For example, if you placed a disjunctive mandatory constraint on a unary role (and

2

another role to make a disjunctive mandatory constraint) the unary fact type only

satisfied the constraint when the population of the implied role was true, not false.

5. This meant that unary fact types did not follow the same role population semantics as all

other fact types. For example, if a persion1 plays the Person role in Person has

PersonName then you know person1 has a name. However, if person1 plays the Person

role in Person is married, then you cannot assume person1 is married without checking

the true state of the implied role.

6. This emphasis on the true state (when both true and false were possible values)

seriously neglected the false state. There was no way to incorporate the false state into a

constraint—such as a subset constraint when the unary is known to be false. There was

also no way to objectify the false state: objectification had to assume true because using

one object to objectify polar opposite states is not meaningful.

7. We could not make a unary fact type mandatory—to force a true/false choice—because

a unary fact type cannot be mandatory. This was an odd state where we were stuck

between the unary display (where mandatory makes the fact type worthless because it

implies all instances play the role, so there is no reason to record it) and the underlying

binary representation. A simple mandatory constraint here would have had a different

meaning, so could not be displayed.

8. The negation of a unary in logic was not exact because of the 3-state system (all unaries

were mapped to nullable true/false). So, for some x of type X where x.a is meaningful

and exact—the unary has the true value recorded. However, for some x of type X where

~x.a is ambiguous because we cannot distinguish between the false and null states, ~x.a

is true for both states. There is simply no way to convey that ‘x.a is known to be false’.

So, effectively, we made a mistake in the dawn of NORMA. The live binarization has proven to

be extremely useful for all constructs—except unary fact types. Unary fact types have been less

powerful than they should be, are always mapped to true/false/null in a relational mapping

(even when false is not used) and must frequently be special-cased even when analyzing the

fully binarized form of the model—thus negating the benefits of binarization in the first place. A

unary is simply not difficult to map compared to other complex forms (an objectified quaternary

fact type with a surrogate id, for example), so there is minimal benefit in standardizing with a

construct that does not map well to the underlying logic and needs to be special cased most of

the time regardless.

Unary Negation Fact Types

From this point forward, a unary fact type is just a unary fact type. There is one role. There is no

binarized form. There is no implied value type. If an instance plays a unary fact type, then there

is no need to check if the opposite value is true. Simply playing a unary role now has the same

semantics as playing any other role.

3

Clearly, this is the easy approach for logic, and ORM is a graphical representation of first order

predicate logic. However, ORM is also a domain modeling tool, and it is extremely valuable in

the domain modeling space to have a single element that can represent a true/false (or yes/no)

state. Basically, any fact type that maps to the answer to a yes/no question is likely to have

multiple states. For example, Do you prefer the new unary fact types? has a natural answer set

of yes/no/unknown—or true/false/null (hopefully, you’ll give an unequivocal ‘yes’ answer by

the end of this discussion).

To model this natural domain fact type without a false state would require two unary fact types

and an exclusion constraint across the roles (or exclusive or constraint for the a required

answer) constraint. However, even this clumsy construct is not sufficient to classify these as

formally opposite states because in a physical mapping it will be two columns (properties,

attributes, etc.) The value for each column will be 1, and it is not clear (without adding a very

smart language parser for the readings) which of these exclusive unaries is the ‘true’ state and

which is the ‘false’ state. Clearly, two unaries with an exclusion constraint is not sufficient on its

own to accurately describe a true/false/unknown answer in a model representing a natural-

language survey question.

To resolve this tension between the language and logic views of the model, we have added a

unary negation fact type to NORMA. This fact type is formally related to a positive (aka normal)

unary as its negation. This fact type does not have to be seen by the end-user at all—unless

there is a need to constrain or objectify the false state. In addition to the negation fact type, the

construct also creates an exclusion constraint and possibly a mandatory constraint. To simplify

the possible combinations of unary fact types and associated constraints—and to ensure they

are all correct when defined—this pattern is managed through a new UnaryPattern property

offered on a unary fact type.

The UnaryPattern property has three main states based on combinations of possible True, False

and Unspecified values. The term Unspecified term was chosen over Null (too closely associated

with physical implementations) and Unknown (I started with Unknown, but I consider a null

statement to be a known state, so I did not like the implication that a null state is the same as an

unknown state). Using Unspecified is a few more letters, but I believe this is the best

representation of the conceptual intent, allowing for the user to associate the lack of a fact type

with a meaning.

The four main UnaryPattern states are:

1. True/Unspecified indicates that there is no negation. This is a simple, non-negatable

unary fact type. These are now physically mapped to only allow true values (or null).

2. True/False/Unspecified indicates a paired negation unary with a pair exclusion

constraint. The exclusion constraint is included in the model (and placed inside the

positive unary in the Model Browser) and can be placed on the diagram if desired by

dragging it from the model browser. The full structure is shown here. A reading for

4

the negation is not required (unless either unary is objectified) but would generally

be added for clarity if the shape is shown. However, the negation only needs to be

displayed if it is objectified or involved in constraints. Otherwise, the plus on the

primary unary indicates that a negation is available (and the minus indicates that this

is a negation).

3. True/False indicates that one of the pair must be specified. The display is changed to:

4. A final option makes the mandatory deontic and is shown as True/False obligatory.

This displays as:

Note that the dot is notched at the four ±[3]π/2 locations. This gives a slight

distinction for printed forms of the model. It is expected that this form will be the

least-used, especially with the availability of default values (discussed next).

In practice, the constraints will not be displayed, and the negations will not be shown unless

needed for objectification or constraints. The state of the + annotation on the positive unary,

which can have one of the three shown forms for a negatable unary, is sufficient to indicate the

entirety of each pattern. Generally, if both fact types are shown, proximity on the diagram and a

provided reading for the negation are sufficient to indicate the unary pairing. The unary fact

type verbalization also includes the implied exclusion (and possible mandatory). For example,

the True/False unary pattern verbalizes the positive unary fact type as follows:

Action is allowed.
In each population of Action is allowed, each Action occurs at most once.
For each Action, exactly one of the following holds:

that Action is allowed;
that Action ~is allowed.

The verbalization also shows the implied reading for a negation unary (A r becomes A ~r, and r A

becomes ~(r A)). Obviously, if a reading is supplied for the unary negation fact type then the

default negation reading is not allowed.

The UnaryPattern property also allows the modeler to specify default values. So, for example,

you’ll see True/False (default True) listed just below the True/False value in the list. The default

values are filled into the DefaultValue property as True for the matching unary role—a default

5

False state becomes a True DefaultValue on the role for the negation unary. For a unary fact

type these defaults can only be controlled through the UnaryPattern property, so are presented

as read-only. As with other default values, if you have a unary on an absorbed object type

(subtype, unary objectification, etc.) then the database cannot include the default.

Unary Negation Editing Gestures

The UnaryPattern property on a unary fact type is the controlling mechanism for the supported

unary negation patterns. This property is available on both the positive and negation unary

sides of the fact type pair. UnaryPattern is also an emphasized property on a unary

objectification, so you can see and set it without using the expandable ObjectifiedFactType

property. The UnaryNegation=True read-only property is also set if the negation fact type is

selected.

The UnaryPattern is the only mechanism available for setting default values, True/False

obligatory state, and for removing the unary negation. However, other editing gestures are

integrated in other parts of the tool to make them easier to work with.

Is Mandatory Menu

The Is Mandatory menu is enabled on any unary fact type. If the unary has no negation or

allows an Unspecified state, then selecting this will jump directly to a True/False unary pattern.

If True/False or True/False obligatory are set then the menu item is checked and selecting it will

drop back to a True/False/Unspecified pattern. Default value settings are preserved.

This Is Mandatory menu item is not the same as the IsMandatory property in the Properties

Window for a selected unary role. The role property will always be False and read-only for a

unary fact type. The Is Mandatory menu is hijacked for convenience and refers to the disjunctive

mandatory on the paired unaries.

Fact Editor ~ Notation

The tilde (~) character is frequently used in logic expression to represent the logical not

operator. Therefore, since the positive fact type and its negation are logical inverses of each

other, this is a good notational match to represent ‘the other paired unary fact type’ when one

is selected. Therefore, it is appropriate to use in the implied negation reading of a positive unary

(A ~r) and in the fact editor, which displays readings based on selection.

Note that ~ is not very useful in shape display, as discussed earlier, because the shape needs

context from some other annotation. Since ~ means the NOT operator, it cannot on its own

imply if the thing it is operating on is positive or negative, so ~Ar will mean the negation if r is

the positive reading—or the positive unary if r is the negation reading (and the unary pattern is

True/False so the null state is not in play).

6

The ~ character is used with a unary fact type in the Fact Editor similar to the way the forward

slash (/) character is used to specify forward and reverse readings with a binary fact type. The

behavior is subtly distinct, however.

1. The ~ specifies the start of the inverse reading, so Action is allowed~is disallowed

specifies both the positive and negative forms for a new fact type. However, if the

negation unary is selected, then this will show as Action is disallowed~is allowed.

2. The inverse reading is not required to use the ~, so the Action is allowed~ will create

a negatable unary with no negation reading. This can also be done after the non-

negatable unary is created (select the unary, add ~ in the Fact Editor, Ctrl-Enter to

commit the change).

3. Since unary fact types have one role, the ~ can work on either side of the named role

player, so disallow~allow Action is valid.

4. Using a tilde in the reading will force a negatable state (True/Unspecified will

become True/False/Unspecified) but the fact editor cannot be used to remove the

negation. Removing a negation requires a change to the UnaryPattern property. So,

changing Action is allowed~is disallowed to Action is allowed~ or Action is allowed

will not affect on the unary pattern (the first with the trailing tilde will remove the is

disallowed reading, and the second will not change the inverse reading).

Reading Editor Additions

Selecting a negatable unary in the reading editor will add an extra branch. This structure is

similar to the Reading Editor behavior when selecting a role in an objectified (or spanning

binary) fact type. In the objectification case, selecting a role will show Fact Type Readings, which

are the readings for the selected fact type, and Implied Fact Type Readings, which are the

readings for the link fact type corresponding to that role.

For a negatable fact type selection, you will see Unary Negation Readings, which contains the

readings for the paired unary. This header will change to Positive Unary Readings if a role in a

negation fact type is selected.

If the unary is objectified and negatable both the implied fact type and negation/positive

headers will appear at the same time.

Shape Drag Operations

If either side of a paired unary (or the unary role) is selected, then you will see a Drag Unary

Inverse menu item. Clicking this will create a drag cursor for the paired fact type, which you can

then click onto the diagram. This is effectively a shortcut for selecting the fact type in the model

browser, locating the paired fact type, and dragging it out. (You will still need to do this to see

the constraint shapes).

I liked this construct, so I added similar drag operations in two different places:

7

• The context menu for a role in an objectified (or spanning binary) fact type has a Drag

Link Fact Type menu item. As with Drag Unary Inverse (which may also be there), this is

a shortcut for tracking down the link fact type in the model browser and dragging its

shape out.

• The Fact Editor now has two commit commands. The traditional one (auto populate new

shapes) is still bound to Ctrl-Enter, but a new Alt-Enter command is also available to drag

the shapes. You can see both of these on the new toolbar to the left of the Fact Editor

(along with shortcuts if you select the Fact Editor window and hover over the toolbar).

The new command lets you click exactly where you want your shape to go. This will

create the committed fact type shape only—you can drag the roles out to create the

object type shapes. This is very handy if you are adding to a complex diagram, where the

auto placement can be haphazard (at best).

The Fact Editor also supports adding a listing of objects if no reading text is specified. In

this case you will get one click for each object. For example, if you click the diagram (for

an empty window) and type SubAction VirtualAction, then Alt-Enter, you will now have

two clicks available—a shape is placed first for SubAction, then the second click will

place VirtualAction.

If you escape out of drag mode the committed elements will still be in the model, just

not on any diagram. This differs slightly from Ctrl-Enter, where the model change and

diagram change occur in the same undo item.

World Assumption

I chose to use UnaryPattern (a term of my own making) instead of the notion of world

assumption discussed in Dr. Halpin’s seminal ORM book. In his presentation (section 10.6), he

discusses 3 world assumptions (presented as CW, OW and OWN, although I believe the latest

edition changes CW to CWN to indicate the false value is stored):

• Closed World: If not stated as true, the fact is false.

• Open World: If not stated as true, the fact is unknown.

• Open World (with Negation): The fact can be declared to be both known to be true or

known to be false

In Dr. Halpin’s presentation, WorldAssumption aligns with UnaryPattern as follows:

• CW = True/False

• OW = True/Unspecified

• OWN = True/False/Unspecified

8

Clearly, world assumption does not cover all of the unary patterns (True/False obligatory and

the default value states), so it not simply a drop-in replacement without introducing additional

meta data to the ORM model. Implementing world assumption would also have had to address

the same issues as we tackled with unary negation (paired unaries to address objectification

and constraints), so would have led to the same underlying structure.

However, my primary objection to the world assumption is the assumption part. In Dr. Halpin’s

discussion, the assumption is applied in the relational mapping, so CW=a non-nullable bit

column (0 or 1). The problem with this approach is that world assumption describes the

interpretation of the data, but the interpretation of data cannot be enforced by the how the

data is stored. One of the first lessons in ORM is that the data itself is not sufficient to describe

meaning. So, True/False (1 or 0) in the database and True/Unspecified (1 or null in the database)

can clearly both be interpreted as true/false values.

It is frankly arbitrary how the unary state is stored as long as the application (business logic, UI

etc.) knows what the data means. In other words, I can separate storage and meaning. If I’m in a

rebellious mood—or more likely just prefer a nullable column so my database is easier to

populate—I can interpret 1/null as CW and 1/0 as open world. It frankly doesn’t matter how it is

stored as long as the application knows what it means.

By introducing UnaryPattern I avoided the whole non-conceptual question of where an

assumption should be applied (storage, business logic, UI, etc.) and simply present the possible

underlying states of the data. With world assumption patterns I also found myself mentally

translating them to the possible states to process what they meant. The presented unary

patterns show the possible states directly, allowing me to skip a mental step to read the model.

New Relational Columns
Another issue with ‘classic’ unary fact types is that they have mapped similarly to subtypes but

were never close enough to simply interchange a unary fact type and a subtype that plays no

roles. These are conceptually very close. Even though a subtype with no played roles is generally

considered poor conceptual form, it is definitely valid ORM. However, the problem with

interchanging these constructs was a result of the relational mapping more than the conceptual

issues.

• The unary would map to a nullable bit column (0 or 1), even though 1 (without the zero)

would generally be the only used value.

• A subtype with no role players could not be absorbed because this left no evidence of

the subtype in the database schema, so the AbsorptionChoice property was ignored and

these objects always pushed to a separate table.

9

This really was not an acceptable implementation. It would clearly be better if these two

constructs mapped to a consistent structure so that conceptual preferences would not affect

the final mapping.

The next question with a subtype—and this applies to an objectified unary fact type as well—is

whether the bit value is even needed to indicate the absorbed subtype. The question of is a

supertype an instance of one of its (absorbed) subtypes falls into 3 categories:

1. The ‘is of subtype’ answer is fully derivable, which occurs if the subtype plays

mandatory roles. The mandatory constraints can be simple, or with all roles in a

disjunctive mandatory played by the subtype.

2. The ‘is of subtype’ answer is partially derivable. This occurs when the subtype does

not have mandatory roles but still plays some roles. In this case, conceptually, the

subtype can either be inferred—if a non-mandatory role is played—or declared

explicitly.

3. The ‘is of subtype’ answer is fully asserted. In this case, no roles are played by the

subtype, so it can never be inferred.

From a mapping perspective, this means that for case #1 there is no need to store an ‘is of

SUBTYPE’ column, but we need a way to assert the subtype for cases #2 and #3. For an

objectified unary, this will also mean that the bit column is not needed at all if the unary

objectification object type plays a mandatory role.

This question of whether or not an extra column is needed to satisfy a declared subtype (or if

the unary column is not needed) is based on analysis of the mandatory state for all absorbed

types. If the type is separate (which is available for both objectified unary types and subtypes)

then this analysis is not needed. However, for an absorbed type, any absorbed subtype that

cannot be fully derived needs data to declare the supertype as an instance of the subtype. We

refer to these as isSUBTYPE columns, but the same pattern applies to other absorbed 1-1

constructs (the link fact type for a unary objectification is 1-1). Note that if the mandatory

constraint is on a non-functional role (one without a single-role uniqueness) then subtype

evidence can be in another table, but the most common case of mandatory constraints on

functional roles will mean the data to infer the subtype is available in the same row.

Unary vs Objectified Unary vs Subtype

The relational mapping for a unary negation is pretty clear—a single column is created with a

Boolean (0/1 bit in SQL) value. This paired column will be non-nullable if the unary pattern is

True/False and if the unary is not part of an optional absorbed object type (usually a subtype or

objectification). With this type of column, the 0 state represents that the negation fact type is

populated. A true-only column (0 is not allowed) is created for a non-negatable unary. None of

this is difficult.

10

The trickier part of the mapping comes when either (or both) of the unary fact types is

objectified. In this case, the unary pairing is broken. For example, if a positive unary is

objectified and the negation is not objectified, then the negation is mapped as a standalone

true-only column and the objectified value is not mapped to a column (either the 0 or 1 state).

By default, the objectification will be absorbed, so the mandatory-analysis will be applied to

determine if an extra column is needed to assert the subtype.

If the extra column is needed, then we will check if this comes from a unary pair and if the

opposite unary also needs a column (so is not objectified, or objectified and requires a maker

column). We use the unobjectified naming analysis for these columns, so the column name will

look the same if it is paired directly or if it is being treated the same as an isSUBTYPE column.

However, the analysis path to get this extra column paired and named is completely different

than the case with no objectification.

The old NORMA unary structure used a specialized subtype of Role for unary objectification. In

the standard objectification, all mapping is done over the link fact types and the original roles

are eliminated. In the unary case, however, the objectification was aligned with the true state,

but the false state was always available as well. This meant that we generated a column for the

unary fact type in both objectified and unobjectified cases to make sure the false could be

stored, thus representing both the link fact type and the objectified role in the mapping—unlike

all other objectifications where only the link fact types are mapped. This extra complexity was

removed with unary negation because the two states are separate fact types that are

opportunistically combined into a single column. Unary objectification now has the same meta-

model as any other objectification.

isSUBTYPE Columns

As a result of the new mandatory-constraint analysis, an absorbed subtype (or absorbed

objectified unary fact type) will now get an extra column called isSUBTYPE in the primary table.

Previously, we ignored the absorb request if there was no evidence—meaning extra columns—

in the absorbing table. However, this meant that there was no distinction between the fully-

derived and partially-derived states.

The new mapping is far superior and accurately reflects the model. If it is determined that a

column is needed (for asserted or partially derived subtypes) then the new column will be

called isSUBTYPE, where SUBTYPE is the type name (with relational naming rules applied). For

unary objectification, the isSUBTYPE column uses the unary fact type naming instead of

isOBJECTIFIED_TYPE_NAME, but under the covers these are the same as isSUBTYPE columns

used for a subtype.

IsIndependent Availability

Although an objectified unary fact type and a subtype have a similar mapping, the appearance

of isSUBTYPE columns may be hard to predict because of two rules in ORM theory:

11

1. An object type that plays no non-identifying mandatory roles has an implied

mandatory constraint across all played roles unless the object type is marked as

independent.

2. The supertype relationship is considered mandatory, so a subtype can never be

independent.

In practice, this means that if a subtype plays a single non-mandatory role, then there is no

implied mandatory constraint on that role. However, if a unary objectification plays a single non-

mandatory role, then that role is implicitly mandatory unless the objectifying type is marked

with IsIndependent=true. This might be a little confusing at first: the subtype will get the

isSUBTYPE column, but the unary will not show the subtype marker column unless it is

independent.

This demonstrates the tight mapping between independent object types and isSUBTYPE-

equivalent columns.

• If an absorbed type can be independent, then it will only have an isSUBTYPE column if it

either plays no roles or is marked with IsIndependent=true. Generally, an enabled

IsIndependent property means the object type not a subtype, so an absorbed type that

can be independent is usually the objectification of a unary fact type, although direct 1-1

identification of any object type can also cause an absorption attempt into the

identifying table

• A subtype will never have an implied mandatory constraint, so an absorbed subtype will

have an isSUBTYPE column unless the subtype explicitly plays a mandatory role.

For example, with this model:

You’ll see the following relational table with an isSubAction column because SubAction does not

play a mandatory role, but no isAllowed column because AllowedAction has Priority is implicitly

mandatory.

Action

PK : actionId : int

allowedActionPriority : int

isSubAction : true

subActionDescription : varchar(512)

12

When we modify the model by making AllowedAction independent and adding an explicit

mandatory constraint we gain a column for AllowedAction and lose one for SubAction:

Action

PK : actionId : int

allowedActionPriority : int

isAllowed : true

subActionDescription : varchar(512)

Adding an negation to the unary (select is allowed, change the fact editor to Action is allowed~is

disallowed and commit) pairs the negated state with the isSUBTYPE-style column for isAllowed,

giving a Boolean type.

Action

PK : actionId : int

allowedActionPriority : int

isAllowed : boolean

subActionDescription : varchar(512)

Finally, if we remove the independent state, the extra type column is no longer needed, so the

unary negation can no longer be paired. Since is disallowed can longer be represented as the 0

value in the isAllowed column, it gets its own true-only column. This is the same mapping as two

separate unary fact types (instead of a unary negation). This also demonstrates why unary

negations require a reading if either state (positive or negation) is objectified.

13

Action

PK : actionId : int

allowedActionPriority : int

isDisallowed : true

subActionDescription : varchar(512)

This difference in implicit mandatory semantics also means that if you want the implied

mandatory behavior on a subtype, you can use an objectified unary instead of the subtype and

obtain the same mapping, at least in the relational mapping—other physical mappings may

require a representation of the objectified type. Regardless of your conceptual preference, both

subtypes and objectified unaries can now be an easier representation than multiple individual

subset constraints: create a subtype (or objectified unary) with a mandatory role player, then

attach your subset role players to the same type to conceptual group the fact types with no

side-effects in the mapping. Also, NORMA does not currently relationally map the external

subtypes, so in addition to removing a lot of external-constraint noise from the model, this will

give you stronger check constraints in the generated DDL.

Migration from Earlier NORMA
The first time you open NORMA after upgrading you’ll see a message describing these changes

with links to this white paper and an overview video on the same topic. This is meant as a

warning that any older model you open with your new NORMA will require review of the unary

fact types.

The default unary conversion from the binarized form to the unary negation form preserves the

old mapping, which is a unary pattern of True/False/Unspecified. This means you’ll see all of the

unary fact type shapes displayed with the circled-plus notation.

The easiest way to review these is to use the Fact Types expansion in the ORM Model Browser

tool window. The unary fact types can be easily spotted here. I dock the Properties window

below the model browser on the right of the work area and the ORM Fact Editor tool window

below the diagram. You can now select a unary fact type, determine the appropriate unary

pattern, and easily add a reading for the negation if you choose to keep the negation. You can

14

also review the verbalization and select the fact type in a diagram if you want to make further

changes.

After review—with or without unary changes, but definitely with them—you may have a

modified DDL file. Modifications will including stricter types on the unary columns (true-only

restrictions) and new isSUBTYPE columns. You will need to upgrade your data to match these

changes. For unaries, there are three possible changes: remove FALSE values, change the

column type, and modify the nullable state. You can see changes in the GIT diff for the DDL.

However, applying these changes manually can be tiresome for a large DB, so you can also

query the database meta information to automate some of the migration process. For example,

a couple of minutes of internet sleuthing led to this for PostgreSQL:

SELECT format(
 'UPDATE %I.%I SET %I = NULL WHERE %I=FALSE;',
 table_schema,
 table_name,
 column_name,
 column_name
)
FROM information_schema.columns
WHERE data_type = 'boolean'
 AND table_schema NOT LIKE 'pg_%'
 AND lower(table_schema) <> 'information_schema'
 AND is_updatable = 'YES';

Executing this in a query window produced lines like the following as output.

UPDATE public.fact_type SET is_derived = NULL WHERE is_derived=FALSE;

You should then selectively review these lines (against the DDL differ) and execute the filtered

SQL to remove all FALSE values from true-only columns, then use the following to produce

additional DDL to modify the column types (you’ll see the generated BOOLEAN_TRUE domain

when you diff your DDL. Make sure you add this to the database first).

SELECT format(
 'ALTER TABLE %I.%I ALTER COLUMN %I SET DATA TYPE public.BOOLEAN_TRUE;',
 table_schema,
 table_name,
 column_name
)
FROM information_schema.columns
WHERE data_type = 'boolean'
 AND table_schema NOT LIKE 'pg_%'
 AND lower(table_schema) <> 'information_schema'
 AND is_updatable = 'YES';

To produce executable output like this, which again may need to be filtered based on the DDL

diff.

15

ALTER TABLE public.fact_type ALTER COLUMN is_derived SET DATA TYPE
public.BOOLEAN_TRUE;

Once these changes are in place your database will be migrated sufficiently to a state matching

the current DDL and be ready for continued use.

Default Values
With an available True/False unary pattern producing a non-nullable role, I wanted to make a

default value available to simplify initial data population. However, there was no facility for

default values in the tool, so I added a default value capability to all roles (except subtype and

supertype roles) that map to single columns in the database. The relational mapping for this is

not guaranteed because a default value on an absorbed subtype (or similar construct, like an

objectified unary fact type) cannot be mapped to the relational model. With absorption, all

columns for the subtype must be null, so setting a default value on these columns would force

the supertype to be of the subtype for every new insert.

The mapped default values are associated with a role, but the system itself begins with a value

type. Setting the DefaultValue on a value type simply provides a default for roles of that type, it

does not produce relational output for the type. From an implementation perspective, default

values are very similar to value constraints, which can automatically apply to downstream roles

(for example, a value constraint can apply to an identifier that ultimately uses the value type).

So, default values and value constraints go through similar validation—they both must satisfy

the data type and any context value constraints.

The difference between value constraints and default values (obviously apart from the purpose

of the construct) is that value constraints cannot be arbitrarily turned off for a given role,

whereas default values can be. So, the DefaultValue property on a role will always have a choice

of <No Default Value>. If a context default value is available, it will be the default and show

<Context Default Value> = VALUE in the dropdown. In this case, a special state is saved to

remove the context default. For string types, you may also want an empty default value. This

empty needs to be distinguished from the context default and is also stored as a special internal

state. From the editor perspective, however, simply delete the text in the DefaultValue property

to enter the empty default. You can choose <No Default Value> (or a context value) to remove

this empty default.

The default values are not shown on the diagram, but they are mapped to the relational model

(except for absorbed types) and are also shown with the role verbalization. A modified default

value will appear in bold in the Properties Window (except for the empty state, where there are

no characters to bold).

16

Other Changes
There are a few other changes and defects fixed in this release. Fixes happen organically when

you touch and test over 250 files.

Diagram Spy All Diagrams

The one notable change is with the Diagram Spy window. This window is meant to show an

alphabetized list of diagrams when it is first opened. However, this feature has never worked

beyond small models. Basically, if you use a .NET LinkLabel control, the paint routine fails if you

have too many labels, so the links were removed if the paint routine failes. [I always figured

.NET would fix this, but they never did.] This view no longer uses the LinkLabel control, so you

now get clickable diagram lists for all models (not just trivially small ones).

Since the all diagrams view is reliably useful now I added a menu item to get back to it. So, from

a diagram in the Diagram Spy window, you can now choose Show All Diagrams from the context

menu to get back to the diagrams list. You will also see visited diagrams in a browser ‘visited’

color until the list is reconstructed (diagram additions/deletions/name changes, or a

deactivate/reactivate of the model). The visited colorization conveys useful information, so I did

not block this default behavior.

Smaller Relational Changes

As part of the default value analysis, I noticed that downstream value constraint validation had

not been implemented. For example, if you have a value type value constraint of [10..20] and a

role value constraint using that value type of (9..20] you would not have an out of range error.

This was clearly incorrect because the (9..10) portion of the range on the role is not allowed by

the value type. To counteract this missed validation, the DDL would produce check clauses for

all of the context value constraints, so you would get a check clause to enforce both (9..20] and

another (stronger) one for [10..20]. With this validation added to the tool you will only see the

nearest value constraint, which is guaranteed to be a subset of earlier constraints if the model

errors are clear. This may remove some value constraint clauses from the DDL.

Another annoying issue with the DDL is that large check constraints produced to enforce

subtype mandatory constraints on absorbed subtypes would frequently reorder column names

when the model changed. In this case, the secondary grouping of the referenced column names

was based on the internal (GUID) identifier of the column, not the name, and the ids can

regenerate when the model updates. This resulted in equivalent but reordered DDL, producing

text diff that needs to be evaluated. This has now been updated to use the column names,

which means future changes will be more stable in this area. However, for this initial change,

you are likely to see some reordering in the generated DDL produced by this new NORMA

version.

17

Sample Population

The sample population was updated to use a checkbox for a unary state. Populating the

negation will require the negation unary to be selected, either in the model browser or by

dragging out a shape.

There was also a major hang resulting from recent auto-generated identifier changes (part of

the addition of the UUID data type). This added the <Auto Generate> tag to the sample

population drop down. To handle cases where an object identifier used an indirect identifier (a

subtype, another type that used the auto-id type as part of its identifier, etc.) we recursed the

identifier structure to determine if the auto generate entry was needed. This recursion code

had a typo (pid.RoleCollection instead of recursePid.RoleCollection) that caused an infinite loop.

